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Abstract--Osmophoresis denotes the motion of cells or small capsules in concentration gradients. When 
a fluid particle encapsulated in a semi-permeable membrane is placed in a solution having non-uniform 
concentration the particle responds to the local osmotic differences. It may shrink or swell and it may 
move from its initial position depending on the external concentration field. The quasi-steady analysis of 
osmophoretic motion of a rigid spherical capsule in a constant gradient presented by Anderson is extended 
to consider the more realistic case in which the encapsulating membrane is deformable. The model 
considers the combined effects of local osmotic pressure difference and local normal stress component and 
integrates a simultaneous solution of the flow field and the surface deformation. We consider uniform and 
non-uniform concentration fields having zero and constant gradients, respectively. Various membrane 
properties and shapes and their influences are examined. In uniform concentrations the capsule goes 
through a single stage of adjustment of the shape to the developing concentration and stress differences. 
In fields with concentration gradients the solution indicates a three stage dynamics. A stage dominated 
by swelling, a stage of advance in the concentration field and a stage dominated by deformation during 
which the motion ceases. Osmophoresis of deformable particles appears to be a transient phenomenon. 
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I N T R O D U C T I O N  

When  a fluid par t ic le  su r rounded  by a semi-permeable  m e m b r a n e  is immersed  in a second so lu t ion  
in which a different concen t ra t ion  or  a concen t ra t ion  grad ien t  o f  the non-pe rmeab le  solute  exists, 
the osmot ic  flow th rough  the m e m b r a n e  m a y  cause it to move and deform.  G o r d o n  (1981) has 
p roposed  the term " o s m o p h o r e s i s "  to descr ibe this mo t ion  o f  a semi-permeable  capsule  in the 
presence o f  osmot ic  gradients  and  suggested that  this mechanism m a y  prov ide  one possible  
exp lana t ion  to the chemotac t ic  mo t ion  o f  cells (Devreotes  & Z i g m o n d  1988) in response to 
concen t ra t ion  gradients  o f  different  solutes in the su r round ing  ambien t  fluid. Assuming  tha t  the 
osmot ic  force dr iv ing the solvent  across  the m e m b r a n e  represents  the force that  p rope ls  the cell, 
G o r d o n  (1981) derived an expression for the osmophore t ic  velocity o f  a spherical part icle by equat ing 
this propel l ing force to the Stokes viscous resistance exerted by the sur rounding fluid on the cell. The 
velocity,  thus calcula ted,  was found  to be p r o p o r t i o n a l  to the square  o f  the par t ic le  size, to the 
external  concen t ra t ion  grad ien t  and  inversely p r o p o r t i o n a l  to the viscosity o f  the su r round ing  fluid 
medium.  Moreover ,  the cell was found  to move toward  regions o f  higher  solute concent ra t ions .  

Pope  (1982), inspired by G o r d o n ' s  theory,  t r ied to exper imenta l ly  measure  the force exerted on 
a semi-permeable  m e m b r a n e  by an osmot ic  flow and found  that  the measured  forces were not  
reproducib le .  The forces exhibi ted inconsis tent  d i rect ions  and were much smal ler  in magn i tude  than  
those predic ted  by the theory.  He conc luded  that  solvent  flux across  the m e m b r a n e  may  be a 
diffusion process,  which does  not  t ransfer  m o m e n t u m  to the membrane ,  ra ther  than  a viscous flow 
that  exerts  a d rag  on the m e m b r a n e  and that ,  thus, the osmophore t i c  velocities should  usual ly  be 
expected to be small.  

Assuming  that  no mechanica l  force is exerted by the fluid on the m e m b r a n e  and that  the fluid 
velocity th rough  the m e m b r a n e  is p r o p o r t i o n a l  to the sum of  the no rma l  stresses and the osmot ic  
pressure  differences across  it, A n d e r s o n  (1983) solved the m o m e n t u m  and  mass  balances  for the 
fluids and the solute for a rigid spher ical  vesicle, and  ob ta ined  an expression for the o smophore t i c  
veloci ty which was essential ly different  f rom that  der ived by G o r d o n .  A n d e r s o n ' s  o smophore t i c  
velocity is indeed p r o p o r t i o n a l  to the concen t ra t ion  grad ien t  but  it is independen t  o f  the fluid 
viscosity and  its dependence  on the par t ic le  size is at  most  l inear.  M o r e  impor t an t ,  the par t ic le  is 
expected to move  t oward  regions o f  lower ra ther  than  higher  solute concent ra t ions .  The  effects o f  
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shape and permeability were also investigated (Anderson 1984) but no fundamental or qualitative 
differences were found regarding the particle motion in comparison with the spherical particle. In 
the limit of  large diffusion rates, and low inner concentrations of  the solute, the velocity for a 
spherical particle is found to be given by 

v = - ~ 2 a L p R T V C .  [11 

where Lp is the membrane hydraulic conductivity, a is the particle radius, R and T denote the gas 
constant and the absolute temperature, respectively, and VC~ is the external undisturbed solute 
concentration gradient. For a non-spherical particle a similar expression is obtained including an 
additional shape and orientation factor. Thus, oblate or prolate spheroids with their symmetry axis 
parallel to the concentration gradient will move slower and faster, respectively, than a spherical 
cell (Anderson 1984). 

Keh & Yang (1992) extended Anderson's analysis (1983) to examine the effects of  the interaction 
between adjacent particles during osmophoretic motion. They found, lk)r example, that two 
spherical particles aligned with the concentration gradient will move slower than a similar isolated 
particle. However, when the line of  centers is normal to the concentration gradient the particles 
move faster than an isolated one in the same osmotic gradient. 

Although Anderson's (1983, 1984) and Keh & Yang's  (1992) theoretical analyses of the steady 
osmophoretic motion of particles has provided important basic understanding of the process, the 
analyses are limited to the study of the motion of rigid membranes that maintain their original 
shape and conserve the volume and initial concentrations of the encapsulated solution. Moreover, 
the possible effects of local and overall deformation as well as the development of tension gradients 
in the membrane were not considered. While, Anderson (1983) suggests that no qualitative 
difference between the motion of a rigid capsule and deformable particle are expected, no 
evaluation of the aforementioned effects was performed. 

The main purpose of this communication is to examine the effects of the particle deformation 
and the development of membrane tensions on the osmophoretic motion. The analysis presented 
here follows the model of Anderson (1983, 1984) and extends it in order to incorporate these effects. 
The resulting unsteady osmophoretic dynamics accounts for the temporal volume and concen- 
tration changes due to swelling, for the external concentration changes due to the particle motion 
in the concentration gradient, for the local and total membrane deformations and for the 
development of normal and tangential stresses within the membrane. Since swelling is an important 
integral part  of  the dynamics of  the osmophoretic motion and is interesting for itself (Zarda et al. 

1977), the swelling of a non-spherical capsule in a constant external osmotic load was also studied. 
Pure swelling of a red blood cell was studied by Zarda et  al. (1977) but their analysis is limited 
to inviscid particles where the membrane dynamics could not be evaluated. In this study the 
swelling process takes into account fluid viscosity and different membrane rheological properties, 
including those relevant to biological particles. 

G O V E R N I N G  E Q U A T I O N S  

We consider an axisymmetric fluid particle composed of a viscous solution enveloped by a thin 
semi-permeable membrane, and freely suspended in an infinite stagnant viscous fluid in which 
different solute concentration as well as gradients of the concentration may exist. For mathematical 
simplicity both fluid solutions are assumed newtonian and incompressible with equal constant 
density, p, and viscosity, ~. The membrane is assumed to be completely impermeable to the 
molecules of the solute and the undisturbed concentration in the ambient solution is given by 

C~ (x) = C~. (xo) + VC~ • (x - xo) I×1 - '  z [21 

with a constant gradient, V C , ,  aligned with the particle axis of  symmetry. It is also assumed that 
the diffusion of the solute is rapid compared to the convective transport. 

In the absence of inertial effects, the inner and outer flow fields are governed by the Stokes 
equations with the stress, pressure and velocity, denoted by ~, P and v, respectively, defined in the 
usual manner. The velocity vanishes far from the particle and is continuous at the interface. 
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The jump in the surface tractions is equal to the interfacial force, f, i.e. 

a ( ~ '  n)  = f x ~ S  [3] 

where n is a normal unit vector oriented outward and A denotes the outer minus inner difference. 
The interracial force is given by 

f = (y: Vn)n + Vs" y [4] 

Here y denotes the interfacial stress tensor and Vs = (I - nn) • V is a gradient tangent to the surface. 
The first and second terms in the RHS of [4] are the interfacial normal and tangential tractions, 
respectively. 

The stress tensor, y, depends on the particular theology of the membrane and is generally 
expressed as a function of  the strain tensor, e, or the stretch ratio, 2. The constitutive equation 
for a material representing the properties of  a red blood cell membrane which is used in this study 
has been proposed by Skalak et al. (1973) and is of  the form 

~,1 = \ ) - 2 -  1 + K  ( '<, '<2- I))-1,~2 [5] 

here K '  and K" are constants, ~)11 is the stress in the 1 principal direction and the second principal 
stress has a similar form but with the 1 and 2 subscripts interchanged. The main rheological 
characteristic of  this type of membrane is that it is highly resistant to area changes. The effect 
of  these area changes on the stresses is represented by the second term in the RHS of [5] and 
depend quantitatively on the value of K". In addition, a second type of membrane which does not 
conserve area and has linear elastic rheological characteristics, Yii = Keii, where K is a constant and 
there is no summation on i, is considered. In both membrane models bending moments  are 
neglected. 

The membrane rate of  strain is related to the membrane velocity by the expression (Waxman 
1984) 

De 1 
- (Vsvs + r s v p ) -  vnVn [6] 

Dt  2 

which is used to follow the membrane deformations. Here vs = ( I - n n ) . v  is the membrane 
tangential velocity and v, = v • n its normal component.  The first RHS term in [6] denotes the rate 
of  deformation due to the tangential motion while the second term describes the deformation due 
to the normal motion. The principal strains and the stretch ratio are related by ei~ = 1/2(2~-  1) 
(no summation on i). 

The osmotic pressure and the stress field differences across the membrane induce a normal 
solvent osmotic velocity relative to the membrane as given by (Anderson 1983) 

Vos = Lp[A(~: nn) + RTAC] [7] 

Note that the van ' t  Hoff  osmotic term is valid for low solute concentrations and that the normal 
stresses difference is used instead of the pressure difference, - A P .  This interchange follows an 
assumption by Anderson (1983). It is expected to be of  no major significance and it also simplifies 
the numerical mathematical  procedure since A(~:nn)=  y:Vn. 

A solution of  the equations of  motion subject to the aforementioned boundary conditions for 
the interfacial velocity follows the analysis of  Rallison & Acrivos (1978). When [7] is taken into 
account the motion of  the membrane is given by 

Vm(X) = --8rc~ J(x -- y)" f(y) d S , -  Vos(X)n x, y ~ S [8] 

where J is the single layer potential for the Stokes flow (Rallison & Acrivos 1978). The first term 
in the RHS of  [8] is the contribution of the motion of the interface (membrane) due to the 
distribution of  interfacial forces, f, while the second term represents the motion of the membrane 
relative to the fluid. 
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The quasi-steady evolution of the membrane location in the viscous field can thus be determined 
by the kinematic condition 

DR(x) 
Dt - vm x e  S [9] 

where R(x) denotes the position of the interface S. 
Finally, to calculate the osmophoretic velocity from [8] the solute concentration difference across 

the membrane must be simultaneously evaluated. In the limit of negligible convective mass 
transport effects, the conservation of solute requires that 

V 2 C = 0  x e V ,  V' [10] 

Here C denotes the solute concentration. Equation [10] is subject to the condition that a 
semi-permeable membrane does not allow solute flow through it 

VC . n = O  x e S  [11] 

and that the solute concentration in V' approaches Co(x), given by [1], as I x l ~  ~ .  
For  the inner concentration field the solution of [10] implies a uniform concentration 

Cin = (Ci,oVo)/V, where C~n0 and V 0 are the initial solute concentration and particle volume, 
respectively. Their product is, thus, the total amount of solute in the particle. The solution of the 
outer solute concentration for an arbitrary surface is given by a single layer potential 

C(x) = f g(y) dS 
jsI-Vc _ rl ,, 

y e S  [12] 

where the distribution g(y) is given by the solution of 

, f ( , )  g ( x ) = ~ V C ~ . n +  •g(y)V ~ . n d S ,  x, y E S  [13] 

For  the case of regular ellipsoids the solution for the outer solute concentration on the particle 
surface is given by Anderson (1984). Approximations based on this solution for spheroidal particles 
can be employed. 

The set of equations is rendered non-dimensional by choosing characteristic values for the 
different variables. Following Anderson (1983), and choosing an appropriate representative 
membrane tension value, 70, the characteristic values are 

/~v a 
x = a ,  V = L p R T A C o ,  a = - - ,  C = A C 0 ,  t = - ,  7 =70 [14] 

a v 

where for non-spherical capsules a is defined using the volume, a = (3 V/4~z) 1/3. A C  0 is the relevant 
concentration magnitude, i.e. AC0 = IC~ - C~,0l for the case of swelling and ACo = I VC~ [a for the 
case of osmophoretic motion. For a typical biological system the values of the physical parameters 
are: a = 10-Sm, C~ = 10-1°mol/m 3, Cin0 = 2 × 10 ~°mol/m3, /~ : 10 3N-s/m2, T = 300K, 
L o = 10 -~ m3/N-s and VC~ = 10 ~ mol/m 4. In addition, based on the values of the parameters 
K ' = 5  × 10-6N/m and K " =  10-~N/m in [5], used by Zarda et al. (1977), 70 = 1 × 10 3N/m is 
assumed, an intermediate value between K'  and K". For the linear elastic membrane 70 was chosen 
equal to K. Using these values and the definitions [14], [8], [3] and [7] we obtain the non-dimensional 
form 

Vm(X) = - - ~  Is  J(x - Y) ' f(Y) dSr - vow(x) 

A(o" n) =/~f=/~[(~/: Vn)n + V~. "/] 

Uos = ~ ('~ " Y n )  + ( C o u  t - Gin ) 

x, y e S  [15] 

x e S [16] 

[17] 



OSMOPHORETIC MOTION 79l 

where the dimensionless parameters 6 and fl are defined by 

6 - LpT0 _ 70/a _ elastic pressure difference [18] 
av R T A C  osmotic pressure difference 

70 elastic forces 
fl /w viscous forces [19] 

The first parameter denotes the ratio between the normal stress difference, due to the membrane 
tractions, and the osmotic pressure difference across the membrane while the second designates the 
ratio between elastic and viscous forces. Using the above typical data, the characteristic 
non-dimensional parameters are: 6 = 4 × 10 2 and fl = 4 x 105. Note that 6/fl is the parameter 
/tLp/a that appears in Anderson's (1983) analysis since, in the absence of interfacial tensions, it 
is the unique dimensionless parameter in the system. 

N U M E R I C A L  P R O C E D U R E  

For arbitrary axisymmetrical particle shape and interfacial rheology properties, [15] needs to be 
solved numerically and in parallel with the evolution of the shape [9] and the interfacial 
deformations [6]. Evaluation of the membrane velocity from [15] is done using a numerical 
calculation of the surface integral appearing in the first RHS term of that equation. Since the kernel 
J is singular at y ~ x  the integral is evaluated in two parts. At each surface point the asymptotic 
part of the singular kernel is subtracted from the integrand and is integrated analytically. The 
remaining regular integral is evaluated numerically and the two results are combined. The 
numerical details of the solution and a description of the mathematical algorithm were presented 
elsewhere (Zinemanas & Nir 1988, 1992) describing similar situations where the motion of a 
biological capsule is determined by active surface tractions. The procedure and an asymptotic 
evaluation validating the numerical accuracy are briefly described in the appendix. In the next 
section this algorithm is implemented in the study of the osmotic swelling and of the unsteady 
osmophoretic motion of particles with different shapes and membrane rheological properties. 
Spherical and various regular ellipsoidal initial shapes were chosen so that the present numerical 
results can be compared with previous calculations. 

RESULTS AND DISCUSSION 

In this section the evaluation of  the swelling and osmophoretic motion of a particle is performed 
using the model described above and assuming that, in all cases, the membrane is initially in an 
unstressed state and with its symmetry axis aligned with the outer concentration gradient. The 
particle is subject to an average positive osmotic load, C~n- Cou,(x0)> 0. 

Osmotic swelling 

The osmotic swelling of  a particle is simulated by imposing a uniform solute concentration 
difference between the inner and outer solutions. An initial oblate (disk-like) shape is considered 
since it resembles the red blood cell profile and because such particles, during the swelling process, 
show volume changes as well as shape deformations in contrast to the case of  a spherical shell where 
only a change of volume is expected with the shape remaining unaltered. 

Figures 1 and 2 show the evolution of various particle variables under the effects of  different 
initial osmotic loads, C~n - Cout, for a red blood cell membrane rheology, described by [5], and for 
an elastic rheology, respectively. It is noted that the two membrane rheologies show different 
deformation patterns. This is due to the different balance in each case between the volume increases 
imposed by the osmotic solvent inflow and the ability of the membrane to undergo area changes. 
These effects are clearly seen in figure 1 (a)-(d) where the particle surface area, volume, aspect ratio 
and the inner concentration are depicted. It is observed that while the volume of the area conserving 
shell increases monotonically, the area, for small osmotic loads, initially increases but later returns 
to almost its initial value. Evidently, the compensation for the relative volume increase is realized 
by the overall deformation, demonstrated by the changes in the particle aspect ratio, 
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D = 2Rmax/ (Zma x - - Z m i n )  [figure l(c)]. At large osmotic loads, however, the large volume changes 
cannot be compensated only by shape deformation and the pressure differences that result from 
the membrane tension. The particle surface approaches a spherical shape and the surface area 
increases as well, until equilibrium conditions will ultimately be obtained when the osmotic 
difference is compensated by the inner to outer pressure difference which equals the normal 
membrane stresses. Evidently, since the amount of solute in the particle is constant, the 
concentration [figure l(d)] is inversely proportional to the instantaneous volume. 

The corresponding behavior of  an elastic membrane which does not exhibit significant resistance 
to area changes is depicted in figure 2(a)-(d). In this case the surface area and the volume increase 
monotonically and the particle deforms considerably. 
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Figure 1. The  d y n a m i c s  o f  the swel l ing process  o f  an  oblate  spheroid encapsulated  in an area-conserv ing  
m e m b r a n e  in a posi t ive  osmot ic  load,  C i . -  Co.t > 0 with  Co.t = 100. (a) Surface area,  (b) vo lume,  (c) 
spheroidal  aspect ratio and (d) inner concentrat ion .  - -  - - -  and - - -  denote  initial A C  0 equal  to 5, 
20 and 50, respectively.  The  corresponding  values  o f  6 are equal  to 8 × 10 -3, 2 × 10 -3 and  8 x 10 4. 
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Figure  2. The dynamics  of  the swell ing process  of  an  obla te  sphero id  encapsu la ted  in a l inear  elast ic 
m e m b r a n e  in a posi t ive  osmot ic  load, Ci, - Coo~ > 0 with Co,t = 100. (a) Surface area,  (b) volume,  (c) 
sphero ida l  aspect  ra t io  and  (d) inner  concent ra t ion .  - -  - and  - - -  denote  ini t ia l  AC 0 equal  to 200, 
350 and  600, respectively. The co r re spond ing  values  'of 6 are equal  to 2 × 10 -4, 1.14 x 10 -4 and 

6.66 x 10 -5. 

The general behavior of  the osmotic swelling of a particle may be summarized by characterizing 
it in terms of  the non-dimensional parameter  5. For large values of  this parameter, i.e. large 
membrane tensile properties compared to the imposed osmotic pressures or relatively small osmotic 
loads, the local as well as the overall deformations are expected to be small since only small 
volume changes are required to induce membrane tensions large enough to balance the osmotic 
pressure difference or to cause the concentration difference to vanish. In the other limit, when 6 < 1, 
the osmotic pressure difference is balanced by large volume changes and local and overall 
deformations which reduce the inner solute concentration, thereby, reducing the osmotic load in 
addition to producing the membrane tensions necessary to oppose the osmotic difference. In the 
intermediate range of 5 .~ O(1), as well as in the previous asymptotic cases, the particle deforms, 
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Figure 3. The underformed spherical capsule in the concentration gradient. Crosses indicate the initial 
location points where the axial velocities depicted in figure 4 are evaluated. 

according to its membrane rheological properties, until the pressure and osmotic differences are 
balanced. 

Osmophoretic motion 

The first case considered is of a spherical particle encapsulated in a semi-permeable linear elastic 
membrane and placed in a linear solute concentration field [2] with its center at x0 (see figure 3). 
The initial osmotic load is positive yet small C~n - Cout = 0.1. Figure 4 shows the evolution of the 
axial velocity, under the conditions described, of 6 surface points initially distributed at equal 
distances along a meridional line from pole to pole. For comparison, the velocity as calculated by 
Anderson (1983) for a rigid spherical particle under quasi-steady conditions, is also shown. The 
corresponding simultaneous evolution of the particle surface area, volume, concentration and 
aspect ratio is depicted in figure 5(a)-(d). Clearly, three different stages are observed. The initial 
one corresponds to the swelling process during which surface area, volume and concentration 
changes are observed [figures 5(a)-(c)], but much smaller shape deformations are evident 
[figure 5(d)]. Simultaneously, membrane tensions and tension gradients develop in a characteristic 
non-dimensional time scale of the order of 1/ft. The second stage is characterized by a nearly 
constant axial velocity which corresponds to Anderson's rigid particle osmophoretic motion. 
During this stage, surface area, volume and concentration changes are almost negligible and shape 
deformations are still small. 

In the third stage the motion of the particle is halted. This effect was not predicted for particles 
with a rigid membrane that cannot develop interfacial tension gradients (Anderson 1983). As can 
be observed in figures 4 and 5 the constant osmophoretic motion of a rigid particle continues even 
after the volume and surface area increased due to the swelling. Furthermore, the normal 
membrane tension component, 7:Vn, is already developed considerably as is evident in figure 6. 
Yet these changes do not affect the osmophoretic velocity as long as they are not accompanied by 
shape defromations. The increase of the membrane tension is not sufficient to render the first term 
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Figure 4. The evolution of the axial osmophoretic velocity, V_., of an initially spherical capsule enveloped 
by a semi-permeable elastic membrane. The various lines correspond to six points located initially 

equidistantly on the surface along a meridional line. 
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Figure 5. The dynamics of  (a) the surface area, (b) the volume, (c) the inner concentration and (d) the 
aspect ratio during the osmophoresis of an initially spherical elastic semi-permeable membrane in a 

concentration gradient. Cin - Cout(xo) = 0.1 initially. 

on the RHS of [15] considerable enough to balance the osmotic velocity. However, when first order 
local deformations occur [see figure 5(d)] the resulting non-uniform interfacial force distribution 
produce a viscous motion that grows until it ultimately compensates the entire osmotic velocity. 
The time scale in which this change occurs depends on the membrane rheological properties and 
on the tension that developed in the swelling stage and prevails during the osmophoretic stage 
(figure 6) and is, non-dimensionally, of  the O(7 1). 

In figure 7 we compare the evolution of  the three contributions to the mean velocities normal 
to the capsule surface, 1/m .... defined by inward flux per unit capsule area. Among the components 
comprising the osmotic velocity ([17]) the normal component due to the osmotic pressure difference, 
Cou,- C~,, is always dominant over that due to the normal stress difference (denoted by the first 
term on the RHS of [17]). The normal component of the newtonian viscous term due to the 
distribution of tension and shape changes (i.e. normal component of  the first term on the RHS 
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Figure 6. The distribution of  non-dimensional  membrane  tensions, 7 : Vn, along the axis of  symmetry of  
an initially spherical elastic membrane  during the osmophores is  process. - - - ,  - - -  and - -  denote 
tension distributions during the swelling, constant  and halting stages, respectively, at t = 0.0005, 0.004 and 

0.015. 

of [15]) grows with the development of the deformation and tensions and ultimately balances the 
contribution of the osmotic load. Thus, as shown in figure 7, there is a net fluid flux into the capsule 
during the initial swelling and constant axial velocity stages referred to in the discussion of figure 5, 
and this flux diminishes as the motion stops. 

The osmophoretic dynamics of  non-spherical particles are not qualitatively different. The 
development of velocity for prolate and oblate spheroids with initially unstressed membranes, are 
shown in figures 8 and 9. Here again the three stages exist. In the first short one the swelling takes 
place and much of the inner concentration, volume and surface area changes occur. During the 
second stage of steady osmophoretic motion, deformation and tension gradients develop until the 
particle comes to a complete stop. The intermediate velocities correspond to Anderson's (1984) 
predictions for rigid spheroidal membranes. 

Figure 10 depicts the effect of the variation of the surface mechanical properties on the 
osmophoretic motion of a spherical capsule. At a higher elastic coefficient, K, the capsule ceases 
to move in a shorter time. Since higher K results in a more rapid increase of the surface forces it 
is also expected that the total deformation at complete halt will be less developed. The behavior 
shown in the figure does not suggest that there exists a critical elastic modulus beyond which the 
capsule eventually comes to rest. The asymptotic value of the osmophoretic speed at the 
intermediate stage remains, however, unaltered. 

0.15 

- 0 . 1 5  . . . . . . . .  , . . . . . . . . .  
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Figure 7. The contr ibut ion of  various driving forces to the mean inward component ,  V m . . . .  of the 
osmophoret ic  velocity of  an initially spherical capsule, denotes the newtonian viscous velocity and 

- - and - - -  correspond to the normal  stress difference and the osmotic load components  in the osmotic 
velocity, respectively. 
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Figure 8. The evolution of the axial osmophoretic velocity and the aspect ratio of an initially prolate 
capsule enveloped by a semi-permeable elastic membrane. (a) Osmophoretic velocity and (b) aspect ratio. 

C O N C L U S I O N S  

The motion of particles in a concentration gradient is different for rigid particles and for particles 
with deformable membranes that can develop and transmit surface forces. In the first case a 
quasi-steady osmophoretic velocity is predicted. When surface tensions and local deformations are 
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Figure 9. The evolution of the axial osmophoretic velocity and the aspect ratio of an initially oblate 
capsule enveloped by a semi-permeable elastic membrane. (a) Osmophoretic velocity and (b) aspect ratio. 
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Figure 10. The evolution of the axial osmophoretic velocity, V:, of initially spherical capsules enveloped 
by different semi-permeable elastic membranes. The various lines correspond to six points located initially 
equidistantly on the surface along a meridional line. (a) K = 2 x 10 -4 (fl = 8 x 104), (b) K - 1 x 10 3 

( f l - 4 x  105 ) and (c) K - 5  x 10 3N/m (fl = 2 x  I06). 

incorporated in the analysis the particle mot ion  is ultimately halted since the surface tractions 
eventually blance the osmotic load. Osmophoresis  of  deformable particles has a transient dynamics. 
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A P P E N D I X  

The quasi-stat ionary nature of  the equations o f  mot ion  allows a simple calculation scheme in 
which the surface velocities may be determined from the known instantaneous solute concentrat ion 
and membrane  shape and tensions. This velocity is employed in the kinematic conditions to 
evaluate by means o f  an updated lagrangian procedure,  new shape, deformations and interfacial 
force profiles. 

The spacial derivatives were evaluated using a finite-difference scheme. The contour  of  the 
axisymetric surface was divided into M - 1 intervals by distributing M points along a meridian 
line. Initially, these intervals were selected equal, however, any other arbitrary choice could have 
been used to anticipate crowding or separation o f  the material points under the effects o f  the surface 
mot ions  and deformations.  Since separation distances change as the points move, a finite- 
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difference scheme for unequal intervals was employed while second-order accuracy was maintained 
when evaluating first and second derivatives using three- and five-point algorithms. 

In evaluating surface velocities it is noted that as y ~ x  the axisymetric components of  the kernel 
J in [15] possess a logarithmic singularity, except at the poles where this singularity is of  
O ( I x - y  [~/2), and therefore the expression is integrable everywhere. Thus, to evaluate the velocity 
at a given point x . ,  the leading orders of the singular kernels, up to O ( I x -  y l2), were subtracted 
from the integrand in the interval between x._ 1 and x. +l. The regular integration which resulted 
was calculated using Simpson's second-order method and added to the analytical integration of 
the asymptotic singular expansion between x._ ~ and x.+ ~. M = 60 was used in most cases as a 
compromise between numerical accuracy and limited computer resources. 

Once the interfacial velocity was found, shape and interfacial tensions were computed for each 
material point on the surface by means of a straightforward Newtonian integration which, for the 
shape variations, becomes 

R(t + dt) = R(t) + v(t)At [A1] 

Since there is no obvious criterion for the stability of this quasi steady evolution of the shape, 
an arbitrary time increment At was chosen having the general form 

mini Axl 
At = C - -  [A2] 

max lAvl 

where Ax and Av are the distance and velocity difference between two adjacent points. C = 1 × 10 7 
was a typical value used as it was found sufficiently small to avoid interfacial instabilities which 
arise at larger time increments due to the membrane properties. 

The validity of the numerical calculation can be established by comparing the results to 
calculations using an asymptotic analysis for the initial small deformations while the membrane 
tensions are not large. The equations of motion and the equations for the interfacial tensions were 
expanded by means of spherical harmonics and were solved for the case where a spherical capsule 
is embedded in a solution in which the undisturbed solute concentration and the capsule inner 
solute concentration at the center are equal, i.e. 

C~ (x0)- C~.(x0). 

With r, 0 and ~b being spherical co-ordinates the normal and tangential components of the 
interfacial forces for the elastic membrane in [16] are of the form 

f .  = 7oo + ~ = f l(2o + 2~ - 2) 

~0-07°° LF02° ] f~ = + (7oo - 7~)cot  0 = f l | ~ -  + (2o - 2~)cot 0 [A3] 
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Figure A1. The evolution of the axial osmophoretic velocities of a spherical capsule. The lines correspond 
to six points located equidistantly on the surface along a meridional line with symmetry about the capsule 
center. - - - ,  asymptotic derivation [A6]; , numerical calculation with M=60 ;  - . - .  , numerical 

calculation with M = 120. 
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F igu re  A2.  In te r rac ia l  n o r m a l  force  profi le  a t  t = 5 x I0 -5 for  the evo lu t ion  descr ibed  in f igure A I ,  
a s y m p t o t i c  ca l cu la t ion ;  - -  a n d  - -  , numer i ca l  c a l cu l a t i on  for  M = 6 0  a n d  M = 120 po in t s .  

and the dynamics of the stretch ratios [6] become 

020 _ (vr - Vros) + - -  = (Vr -- Vros) + VO tan 0 [A4] 
Ct 00 " Ct 

where Vros = C~,-  Cout = AC. Thus with Pj and P) being the familiar ordinary and associated 
Legendre polynomials, respectively, and using the expressions 

).o= 2 LojPj(cosO), 2 , =  ~ LejPj(cosO), A C = ~ P , ( c o s O )  [A5] 
J J 

The Newtonian viscous surface velocity components which are of the form 

- 2 j ( j  + 1)f, + 3j( j  + 1)f~ 
= Z _ Pj(cos 0) vr (2j 1)(2j + l)(2j + 

= 5 ~ 3f, - (Zj2 + 2j + 3)J] p , .  ,,. 
vo ~ ( 2 j -  l ) ~ + i ) ~ j + - 3 )  j t co sv )  [a6] 

were evaluated and used to calculate the surface axial velocity. This velocity was then compared 
to the numerical calculation during the early stages of the osmophoretic motion. 

Figure A1 shows the dynamic axial velocity of points located on the surface calculated by the 
above asymptotic procedure (solid line) and the first 1000 steps of the numerical procedure for 
/ / =  1 x 106 and using 60 and 120 surface points denoted by the dashed and dotted curves, 
respectively. The excellent agreement of the calculations of the initial transient state and the 
convergence to the asymptotic value is evident. Note that, although the same axial velocity is 
approached, all three calculations differ from Anderson's calculation (1983) since in his model 
interfacial tension gradients are not accounted for. Note also that the two numerical evaluations 
using 60 and 120 surface points are almost indistinguishable. At t = 5 x 10- 5 the surface normal 
force distribution is also compared (figure A2) and the agreement between the analytical and 
numerical results is also remarkable. 


